On the edge: modeling protrusion.

نویسنده

  • Alex Mogilner
چکیده

Actin-based protrusion is the first step in cell crawling. In the last two decades, the studies of actin networks in the lamellipodium and Listeria's comet tail advanced so far that the last goal of the reductionist agenda - reconstitution of protrusion from purified components in vitro and in silico - became viable. Earlier models dealt with growth of and force generation by a single actin filament. Modern models of tethered ratchet, autocatalytic branching, end-tracking motor action and elastic- and nano- propulsion have recently helped to elucidate dynamics and forces in complex actin networks. By considering these models, their limitations and their relationships to recent biophysical data, progress is being made toward a unified model of protrusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the evolution of cells outgrowth due to the force exerted by actins

Motility and membrane deformation are crucial to motile cells. Therefore formation of protrusion in the membrane has been the subject of various studies. The stable shape of the membrane and also its movements are controlled by the forces exerted by actin filaments. In order to study the protrusion behavior, we represented a toy model based on actin filaments polar characteristic and elastic ch...

متن کامل

Weak force stalls protrusion at the leading edge of the lamellipodium.

Protrusion, the first step of cell migration, is driven by actin polymerization coupled to adhesion at the cell's leading edge. Polymerization and adhesive forces have been estimated, but the net protrusion force has not been measured accurately. We arrest the leading edge of a moving fish keratocyte with a hydrodynamic load generated by a fluid flow from a micropipette. The flow arrests protru...

متن کامل

The physics of filopodial protrusion.

Filopodium, a spike-like actin protrusion at the leading edge of migrating cells, functions as a sensor of the local environment and has a mechanical role in protrusion. We use modeling to examine mechanics and spatial-temporal dynamics of filopodia. We find that >10 actin filaments have to be bundled to overcome the membrane resistance and that the filopodial length is limited by buckling for ...

متن کامل

Adhesion-Dependent Wave Generation in Crawling Cells

Dynamic actin networks are excitable. In migrating cells, feedback loops can amplify stochastic fluctuations in actin dynamics, often resulting in traveling waves of protrusion. The precise contributions of various molecular and mechanical interactions to wave generation have been difficult to disentangle, in part due to complex cellular morphodynamics. Here we used a relatively simple cell typ...

متن کامل

Modeling of protrusion phenotypes driven by the actin-membrane interaction.

We propose a mathematical model for simulating the leading-edge dynamics of a migrating cell from the interplay among elastic properties, architecture of the actin cytoskeleton, and the mechanics of the membrane. Our approach is based on the description of the length and attachment dynamics of actin filaments in the lamellipodium network. It is used to determine the total force exerted on the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current opinion in cell biology

دوره 18 1  شماره 

صفحات  -

تاریخ انتشار 2006